Search results for " Microbial fuel cell"

showing 8 items of 8 documents

Influence of the methodology of inoculation in the performance of air-breathing microbial fuel cells

2017

n this work, four air-breathing microbial fuel cells (AB-MFC) were operated for 1 month in order to determine if the methodology of inoculation affects the steady-state performance of this type of MFCs. For this purpose, anaerobic and aerobic sludge were fed to two identical AB-MFCs without any external carbon source into a tight sealed environment during the first three days of start-up. For comparison purposes, other two AB-MFCs were operated mixing the initial sludge and an amount of sodium acetate as substrate. Results point out that the inoculation procedure does not affect the steady-state treatment capacity of the cells but it affects very seriously the production of electricity. Onl…

Air-breathing microbial fuel cellsInoculationStart-upAcclimation
researchProduct

Influence of the methodology of inoculation in the performance of air-breathing microbial fuel cells

2017

In this work, four air-breathing microbial fuel cells (AB-MFC) were operated for 1 month in order to determine if the methodology of inoculation affects the steady-state performance of this type of MFCs. For this purpose, anaerobic and aerobic sludge were fed to two identical AB-MFCs without any external carbon source into a tight sealed environment during the first three days of start-up. For comparison purposes, other two AB-MFCs were operated mixing the initial sludge and an amount of sodium acetate as substrate. Results point out that the inoculation procedure does not affect the steady-state treatment capacity of the cells but it affects very seriously the production of electricity. On…

Microbial fuel cell020209 energyGeneral Chemical EngineeringMicroorganismMixing (process engineering)Puesta en marchaStart-up02 engineering and technologyAclimataciónAcclimatizationInoculaciónAnalytical Chemistrychemistry.chemical_compoundInoculation0202 electrical engineering electronic engineering information engineeringElectrochemistryChemical Engineering (all)Air breathingAir-breathing microbial fuel cellsInoculationChemistryPilas de combustible microbianas que respiran aireAir-breathing microbial fuel cellSettore ING-IND/27 - Chimica Industriale E Tecnologica021001 nanoscience & nanotechnologyPulp and paper industry0210 nano-technologyAnaerobic exerciseSodium acetateAcclimation
researchProduct

Influence of the initial sludge characteristics and acclimation on the longterm performance of double-compartment acetate-fed microbial fuel cells

2018

Abstract In this work, three double-compartment MFCs (DC-MFC) were operated for 1 month in order to compare their performances in terms of wastewater treatment capacity and electricity production and to get information about how this performance is influenced by the start-up procedure. To do this, they underwent different start-up procedures. One of them (aerobic-starved MFC) was inoculated with 100% fresh aerobic sludge, another (anaerobic-starved MFC) using 100% fresh anaerobic sludge, and finally a third one (aerobic-fed MFC) was inoculated using a mixture 10% fresh aerobic sludge and 90% synthetic wastewater (based on acetate). Then, from this start-up, the cells were operated exactly u…

Microbial fuel cellAnaerobic sludgeChemistry020209 energyGeneral Chemical EngineeringCombustiblesStart-up02 engineering and technology010501 environmental sciencesSettore ING-IND/27 - Chimica Industriale E TecnologicaPulp and paper industry01 natural sciencesAcclimatizationDouble-compartment microbial fuel cellAnalytical ChemistryElectroquímicaInoculationWastewater0202 electrical engineering electronic engineering information engineeringElectrochemistrySewage treatmentSteady state (chemistry)Acclimation0105 earth and related environmental sciences
researchProduct

REVERSE ELECTRODIALYSIS PROCESSES FOR THE PRODUCTION OF CHEMICALS AND THE TREATMENT OF CONTAMINATED WASTEWATER

REVERSE ELECTRODIALYSIS PROCESSES TREATMENT OF CONTAMINATED WASTEWATER MICROBIAL FUEL CELL MICROBIAL REVERSE ELECTRODIALYSIS CELL
researchProduct

The influence of sludge retention time on mixed culture microbial fuel cell start-ups

2017

Abstract In this work, the start-ups of air-cathode microbial fuel cells (MFCs) seeds with conventional activated sludge cultivated at different solid retention times (SRTs) are compared. A clear influence of the SRT of the inoculum was observed, corresponding to an SRT of 10 days to the higher current density exerted, about 0.2 A m −2 . This observation points out that, in this type of electrochemical device, it is recommended to use high SRT seeds. The work also points out that in order to promote an efficient start-up, it is not only necessary to use high SRT seeds, but also to feed a high COD concentration. When feeding 10,000 ppm COD and keeping SRT of 10 d differences of current densi…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciEnvironmental EngineeringMicrobial fuel cellMicrobial fuel cellAir-cathodeBiomedical EngineeringBioengineering02 engineering and technology010501 environmental sciencesSolid retention time Microbial fuel cell Air-cathode Acetate01 natural sciencesMixed culture0105 earth and related environmental sciencesSolid retention timChemistryAir cathodeAcetateEnvironmental engineeringSettore ING-IND/27 - Chimica Industriale E Tecnologica021001 nanoscience & nanotechnologyPulp and paper industryStart upSolid retention time Microbial fuel cell Air-cathode AcetateActivated sludge0210 nano-technologyRetention timehuman activitiesBiotechnology
researchProduct

Electrochemical Processe s and Apparatuses for the Abatement of Acid Orange 7 in Water

2014

We have studied the electrochemical treatment of aqu eous solutions contaminated by Acid Orange 7 (AO7) by electro-Fenton process (EF). The main object ive was to evaluate how the electrochemical route affects the performances of the d egradation process. EF process was carried out in a number of very different reactors: conventional bench scale electrochem ical cell, microfluidic electrochemical reactor, microbial fuel cell and stack for reverse electrodialysis processes. The utilisation of micro devices allowed to work without the addition of a supporting elec trolyte and improved the performances of EF. Microbial fuel cell did not need the supply of electric energy bu t our device requir…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicireverse electrodialysis microreactor microbial fuel cell AO7 electrofentonSettore ING-IND/27 - Chimica Industriale E Tecnologica
researchProduct

Wastewater treatment and electricity production in a microbial fuel cell with Cu–B alloy as the cathode

2019

The possibility of wastewater treatment and electricity production using a microbial fuel cell with Cu&ndash

cathodenon-precious metal catalysts; Cu–B alloy; microbial fuel cell; cathode; environmental engineering; oxygen electrode; renewable energy sourcesMicrobial fuel cellMaterials science02 engineering and technology010501 environmental scienceslcsh:Chemical technology01 natural sciencesCatalysislaw.inventionCatalysislcsh:Chemistrymicrobial fuel celllawCu–B alloylcsh:TP1-1185Physical and Theoretical Chemistryrenewable energy sources0105 earth and related environmental sciencesenvironmental engineeringChemical oxygen demand021001 nanoscience & nanotechnologyCathodeAnodeElectricity generationChemical engineeringnon-precious metal catalystslcsh:QD1-999oxygen electrodeSewage treatmentAeration0210 nano-technologyCatalysts
researchProduct

ABATEMENT OF ACID ORANGE 7 IN WATER BY DIFFERENT ELECTROCHEMICAL APPROACHES

2014

Very large amounts of synthetic dyes are discharged in the environment from industrial effluents [1]. Due to their large-scale production and extensive application, synthetic dyes can cause considerable nonaesthetic pollution and are serious health-risk factors [2]. Dyes are commonly classified from their chromophore group. The majority of these compounds consumed at industrial scale are azo (–N=N–) derivatives that represent more than 50% of the all dyes used in textile industries, although antraquinone, indigoide, triphenylmethyl, xanthene, sulphur and phtalocyanine derivatives are frequently utilized [3]. Since dyes usually present high stability under sunlight and resistance to microbia…

microfluidic reactors reverse electrodialysis cells microbial fuel cells
researchProduct